1,107 research outputs found

    Flow direction measurement criteria and techniques planned for the 40- by 80-/80- x 120-foot wind tunnel integrated systems tests

    Get PDF
    A study was performed in order to develop the criteria for the selection of flow direction indicators for use in the Integrated Systems Tests (ISTs) of the 40 by 80/80 by 120 Foot Wind Tunnel System. The problems, requirements, and limitations of flow direction measurement in the wind tunnel were investigated. The locations and types of flow direction measurements planned in the facility were discussed. A review of current methods of flow direction measurement was made and the most suitable technique for each location was chosen. A flow direction vane for each location was chosen. A flow direction vane that employs a Hall Effect Transducer was then developed and evaluated for application during the ISTs

    Topological complexity of the relative closure of a semi-Pfaffian couple

    Full text link
    Gabrielov introduced the notion of relative closure of a Pfaffian couple as an alternative construction of the o-minimal structure generated by Khovanskii's Pfaffian functions. In this paper, use the notion of format (or complexity) of a Pfaffian couple to derive explicit upper-bounds for the homology of its relative closure. Keywords: Pfaffian functions, fewnomials, o-minimal structures, Betti numbers.Comment: 12 pages, 1 figure. v3: Proofs and bounds have been slightly improve

    Polarization of Astronomical Maser Radiation. IV. Circular Polarization Profiles

    Get PDF
    Profile comparison of the Stokes parameters VV and II is a powerful tool for maser data analysis, providing the first direct methods for unambiguous determination of (1) the maser saturation stage, (2) the amplification optical depth and intrinsic Doppler width of unsaturated masers, and (3) the comparative magnitudes of Zeeman splitting and Doppler linewidth. Circular polarization recently detected in OH 1720 MHz emission from the Galactic center appears to provide the first direct evidence for maser saturation.Comment: 14 pages, 1 Postscript figures (included), uses aaspp4.sty. To appear in Astrophysical Journa

    The bivalve Anopaea (Inoceramidae) from the Upper Jurassic-lowermost Cretaceous of Mexico

    Get PDF
    In Mexico, the Upper Jurassic to lowermost Cretaceous La Casita and coeval La Caja and La Pimienta formations are well-known for their abundant and well-preserved marine vertebrates and invertebrates. The latter include conspicuous inoceramid bivalves of the genus Anopaea not formally described previously from Mexico. Anopaea bassei (Lecolle de Cantú, 1967), Anopaea cf. stoliczkai (Holdhaus, 1913), Anopaea cf. callistoensis Crame and Kelly, 1995 and Anopaea sp. are rare constituents in distinctive Tithonian–lower Berriasian levels of the La Caja Formation and one Tithonian horizon of the La Pimienta Formation. Anopaea bassei was previously documented from the Tithonian of central Mexico and Cuba, while most other members of Anopaea described here are only known from southern high latitudes. The Mexican assemblage also includes taxa which closely resemble Anopaea stoliczkai from the Tithonian of India, Indonesia and the Antarctic Peninsula, and Anopaea callistoensis from the late Tithonian to ?early Berriasian of the Antarctic Peninsula. Our new data expand the palaeogeographical distribution of the high latitude Anopaea to the Gulf of Mexico region and substantiate faunal exchange, in the Late Jurassic–earliest Cretaceous, between Mexico and the Antarctic Realm

    Measurement of the 187Re({\alpha},n)190Ir reaction cross section at sub-Coulomb energies using the Cologne Clover Counting Setup

    Full text link
    Uncertainties in adopted models of particle+nucleus optical-model potentials directly influence the accuracy in the theoretical predictions of reaction rates as they are needed for reaction-network calculations in, for instance, {\gamma}-process nucleosynthesis. The improvement of the {\alpha}+nucleus optical-model potential is hampered by the lack of experimental data at astrophysically relevant energies especially for heavier nuclei. Measuring the Re187({\alpha},n)Ir190 reaction cross section at sub-Coulomb energies extends the scarce experimental data available in this mass region and helps understanding the energy dependence of the imaginary part of the {\alpha}+nucleus optical-model potential at low energies. Applying the activation method, after the irradiation of natural rhenium targets with {\alpha}-particle energies of 12.4 to 14.1 MeV, the reaction yield and thus the reaction cross section were determined via {\gamma}-ray spectroscopy by using the Cologne Clover Counting Setup and the method of {\gamma}{\gamma} coincidences. Cross-section values at five energies close to the astrophysically relevant energy region were measured. Statistical model calculations revealed discrepancies between the experimental values and predictions based on widely used {\alpha}+nucleus optical-model potentials. However, an excellent reproduction of the measured cross-section values could be achieved from calculations based on the so-called Sauerwein-Rauscher {\alpha}+nucleus optical-model potential. The results obtained indicate that the energy dependence of the imaginary part of the {\alpha}+nucleus optical-model potential can be described by an exponential decrease. Successful reproductions of measured cross sections at low energies for {\alpha}-induced reactions in the mass range 141{\leq}A{\leq}187 confirm the global character of the Sauerwein-Rauscher potential

    Unconditional entanglement interface for quantum networks

    Get PDF
    Entanglement drives nearly all proposed quantum information technologies. The suppression of the uncertainty in joint quadrature measurements below the level of vacuum fluctuations is a signature of non-classical correlations. Entangling frequency modes of optical fields has attracted increased attention in recent years, as a quantum network would rely on interfacing light at telecommunication wavelengths with matter-based quantum memories that are addressable at visible wavelengths. By up-converting part of a 1550 nm squeezed vacuum state to 532 nm, we demonstrate the generation and complete characterization of strong continuous-variable entanglement between widely separated frequencies. Non-classical correlations were observed in joint quadrature measurements of the 1550 nm and 532 nm fields, showing a maximum noise suppression 5.5 dB below vacuum. A spectrum was measured to demonstrate over 3 dB noise suppression up to 20 MHzmeasurement frequency. Our versatile technique combines strong non-classical correlations, large bandwidth and, in principle, the ability to entangle the telecommunication wavelength of 1550 nm with any optical wavelength, making this approach highly relevant to emerging proposals for quantum communication and computing

    Evolution of E2 transition strength in deformed hafnium isotopes from new measurements on 172^{172}Hf, 174^{174}Hf, and 176^{176}Hf

    Full text link
    The available data for E2 transition strengths in the region between neutron-deficient Hf and Pt isotopes are far from complete. More and precise data are needed to enhance the picture of structure evolution in this region and to test state-of-the-art nuclear models. In a simple model, the maximum collectivity is expected at the middle of the major shell. However, for actual nuclei, this picture may no longer be the case, and one should use a more realistic nuclear-structure model. We address this point by studying the spectroscopy of Hf. We remeasure the 2^+_1 half-lives of 172,174,176Hf, for which there is some disagreement in the literature. The main goal is to measure, for the first time, the half-lives of higher-lying states of the rotational band. The new results are compared to a theoretical calculation for absolute transition strengths. The half-lives were measured using \gamma-\gamma and conversion-electron-\gamma delayed coincidences with the fast timing method. For the determination of half-lives in the picosecond region, the generalized centroid difference method was applied. For the theoretical calculation of the spectroscopic properties, the interacting boson model is employed, whose Hamiltonian is determined based on microscopic energy-density functional calculations. The measured 2^+_1 half-lives disagree with results from earlier \gamma-\gamma fast timing measurements, but are in agreement with data from Coulomb excitation experiments and other methods. Half-lives of the 4^+_1 and 6^+_1 states were measured, as well as a lower limit for the 8^+_1 states. We show the importance of the mass-dependence of effective boson charge in the description of E2 transition rates in chains of nuclei. It encourages further studies of the microscopic origin of this mass dependence. New data on transition rates in nuclei from neighboring isotopic chains could support these studies.Comment: 16 pages, 16 figures, 7 tables; Abstract shortened due to character limi
    corecore